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A PROGRAM FOR CAXUIATING OFTIMUM DTMENSIONS OF ALPHA 
RADIOISOTOPE CAPSULES EXPOSED TO VARYING STRESS AND TEMPERATURE 

J. P. Nichols 
D. R.  Winkler 

ABSTRACT 

A method and computer program were developed f o r  calcu- 

The method solves 
l a t ing  the creep and optimizing the dimensions of capsules 
f i l l e d  with alpha-emitting radioisotopes. 
an integral  equation that was developed assuming l inear  accu- 
mulation of p a r t i a l  creep l ives  and re la t ing  l i f e  t o  time- 
dependent s t r e s s  and temperature using the Iarson-Miller pa- 
rameter. The computer program, CAPSUL, i s  writ ten i n  Fortran 
language f o r  the IBM 360/75 computer. The program makes a 
l e a s t  squares f i t  of the creep l i f e  function using conven- 
t iona l  constant s t ress ,  constant temperature creep data. 
Dimensions of capsules having maximum thermal power per  un i t  
of weight,  volume, or area a re  calculated f o r  a given creep 
l i fe  and pressure-temperature his tory using a nunaerical 
Lagrange Multiplier formulation. 
the l i f e  t o  a prescribed s t r a i n  f o r  capsules of given dimn- 
sions and pressure-temperature history.  The method has been 
used t o  analyze creep data f o r  the alloys 304 s ta in less  
steel, Hastelloy N, Cb-l$ Z r ,  FS-85, and T-222. 

The program a lso  calculates 

1.0 INTRODUCTION 

In  capsules containing alpha-emitting radioisotopes f o r  use i n  space 

power packages, it i s  desirable t o  provide m a x i m  power per un i t  of 

weight,  volume, or projected area within the constraints imposed by the 

need t o  maintain capsule in tegr i ty  during normal operation and i n  the 

event of one or more accidental conditions. Because of the continuous 

generation of helium gas,  together with decay of the thermal power, such 

capsules a re  characterized by tine-dependent stress and temperature. 

high i n i t i a l  temperatures cause creep t o  be an important consideration i n  

the design. 

Very 

A model and computer program were formulated f o r  calculation of the 

s t r a i n  and optimum dimensions of capsules within the desired constraints. 
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The following sections w i l l  describe the model and the computer program 

and present an analysis of experimental creep data tha t  tend t o  confirm 

the model. A glossary of sym5ols, example problems, and a program l i s t  

a re  included as  appendices. 

2 .O MATHEMATICAL MODEL 

We wish to  develop a phenomenological model of creep resul t ing from 

time-varying s t ress  and temperature i n  cer ta in  metals f o r  which the only 
available experimental data are  ultimate strength properties a t  low tem- 
peratures and constant load, constant temperature creep properties a t  

high temperatures. 
of s t a t e  t ha t  re la tes  s t r a i n  ra te  t o  s t ress ,  temperature, s t ra in ,  and 

t i m e .  
developed f o r  res t r ic ted  classes of materials. 

has been substantiated f o r  a number of metals''=! and  plastic^,^ assumes 
tha t  the fract ional  creep l i f e  f o r  a given s t r e s s  and temperature i s  inde- 

pendent of other fractions sustained under d i f fe ren t  conditions and t h a t  

these fractions m y  be accumulated l inear ly .  

A precise analysis of the problem requires an equation 

No single equation is  available, but approximate equations m y  be 

One such equation, which 

Stated mathematically: 

where 

e[ u,T] = a function, hereafter called the "creep l i f e  function," 

tha t  determines the l i f e  t o  a prescribed s t r a i n  or  rupture 
f o r  a given s t ress ,  6, and temperature, T, 

t = t i m e  since application of the load, 

0 = resultant l i f e  t o  prescribed s t r a i n  o r  rupture f o r  time- 

varying s t r e s s  and temperature. 

A suitable creep l i f e  function can be determined by empirically 
f i t t i n g  an equation t o  experimental data fo r  s t r e s s  a s  a function of a 

time-temperature parameter. Several time-temperature parameters, including 

those of O r r ,  Sherby, and Dorn; Winson and Haferd; and Larson and Miller, 
have been evaluated f o r  t h i s  purpose; and it was found tha t  the Larson-Miller 
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parameter provided the most accurate correlation f o r  a wide selection of 

metals.4 
t o  the absolute temperature by an equation tha t  my be derived from the 

Arrhenius r a t e  law, 

5 Larson and Miller have related the creep l i f e  a t  a given stress 

T In  K e  = constant, Iarson-Miller parameter . 
The constant K has the physical connotation of "maximum rupture ra te ."  

The common logarithm of K i s  called the Larson-Miller constant and is  i n  

the range of 10 t o  30 f o r  most metals when t i m e  i s  measured i n  hours. 

The development of the creep l i f e  function f o r  the present model i s  

i l l u s t r a t ed  i n  Fig. 1. 

measured nominal, uniaxial  s t ress  t o  the Iarson-Miller parameter. 

creep data a re  obtained a t  temperatures generally above one-third the 

absolute melting temperature by measuring the time t o  a specified s t r a i n  

or  rupture under conditions of constant load (constant nominal stress) 

and temperature. 

"instantaneous" e l a s t i c  and p las t ic  s t r a in )  as  a function of temperature 
a re  determined under conditions of constant imposed s t r a i n  r a t e  which is 
not necessarily the "natural" s t r a i n  r a t e  measured i n  creep experiments. 
We have assumed tha t  the actual l i f e  measured i n  ultimate strength tests 
i s  a good approximation of the equivalent creep l i f e ,  par t icular ly  f o r  

those materials which exhibit  l i t t l e  s t r a i n  hardening (nearly constant 

nominal stress f o r  nominal s t r a in  greater than the yield), because (1) 

the l i f e  approximates uni ty  and has l i t t l e  e f f ec t  on the K 8  product, and 

(2)  the s t r e s s  i s  insensit ive t o  the Larson-Miller parameter i n  the 

low-temperature range a t  which the ultimate strength data are  used t o  
supplement creep data. 

Shown is  a typical  p lo t  re la t ing  the logarithm of 

The 

The data f o r  ultimate strength (or s t r e s s  f o r  a specified 

A s  temperature increases the creep (or time dependent) s t r a i n  f o r  a 

given f ini te  l i f e  becomes a progressively larger  f rac t ion  of the  t o t a l  

s t r a i n  and the f rac t iona l  s t r a in  from e l a s t i c  and "instantaneous" p l a s t i c  

s t r a i n  becomes progressively more negligible. 
logarithm of the applied s t ress  f o r  many n u t t e r i a l ~ ~ ' ~  i s  a l inear  function 

of the Iarson-Miller parameter having intercept In  a and slope m. We 

have assumed tha t  the creep component of stress, uc, has this  l inear  form 

a t  a l l  temperatures. 

A t  high temperatures the 
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A t  temperatures below approximately one-third the absolute melting 

temperature the creep s t r a i n  becomes negligible with respect t o  the 

e l a s t i c  and p l a s t i c  s t r a in .  I n  th i s  region the s t r e s s  i s  generally con- 

s tant ,  u over a large domain of the parameter. This behavior, a s  well 

a s  the behavior a t  high temperatures, i s  accommodated by a resul tant  

stress function tha t  i s  generated by adding reciprocals of the time 

dependent (creep) and time independent components of s t ress .  

f i t t ed  constant, 7, provides f o r  appropriate curvature i n  the t rans i t ion  

region. 

U’ 

An empirically 

The computer program, t o  be described i n  the next section, has pro- 

vision f o r  determination of the constants, Q, m, and K by l eas t  squares 
analysis of a set [ u, T, e] of creep data ,  The constants u and 7 are  

selected by the investigator by analysis of a curve of ultimate strength 

a s  a function of temperature and/or by i t e r a t ion  t o  determine the best  

f i t  of combined ultimate strength-creep data i n  a time-temperature domain 
of in te res t .  

U 

The general formulation of the approximate equation of s t a t e  is  

obtained by substi tuting the creep l i fe  function (Fig. 1) i n  Eq. (1) and 
making provisions f o r  individual safety factors  on ultimate strength, Su, 

and creep strength,  Sc. 

1 

In principle,  the integral  i n  Eq. (2)  can be evaluated numerically 

For radioisotope f u e l  f o r  any time behavior of stress and temperature. 

capsules we have chosen t o  neglect the e f f ec t  of s t r a i n  on the volume of 

the capsule and reinforcing effects  by layers other than the primary 

s t ruc tu ra l  material. End e f fec ts  a re  a l so  neglected since the capsules 
have length-to-diameter r a t i o  greater than 2.  The s t r e s s  i s  considered 

t o  be the maximum nominal tens i le  stress, the circumferential stress a t  
the inner wall of the primary container 
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where 
P = pressure i n  the capsule, 

E = weld efficiency, 

R ( 4 )  = outer radius of primary container, 

R ( 3 )  = inner radius of primary container. 

The time-dependent pressure i s  calculated from the ideal  gas law 
The volume of since the helium g a s  i s  well above the c r i t i c a l  point. 

gas i s  the void volume a t  the center of the capsule plus any additional 

void i n  the fue l  region. 
i n i t i a l l y  plus those tha t  a re  formed by decay of the radioisotope. 

The moles of gas are  those tha t  a re  present 

The heat flux i s  i n  t ransient  equilibrium with the power i n  capsules 

containing long-lived radioisotopes. 
t ransfer  coefficients do not vary appreciably with temperature, the 

temperature of the helium gas and the container wall vary with time i n  

the following way: 

Assuming tha t  the overall  heat 

T ( t )  = Ta + (To - , (4) 

where 

To = i n i t i a l  temperature, 

Ta = ambient temperature, 

h = decay constant. 

Explicit  formulae f o r  the individual temperatures, volumes, e t c  ., 
are  given i n  the following section which describes the program, CAPSUL. 

6 Equation (2)  reduces t o  one previously derived by Kennedy under 
conditions of high constant temperature and constant s t r e s s  ra te ,  a. 
High temperature implies a = it << au; therefore, i f  the safety factors  
a re  unity, Eq. (2)  reduces to :  

1 1 

where 1 and a / p  a re  the constants "n" and "A" used by Qnnedy. mT 
6 Kennedy, and l a t e r  M C C O Y , ~ ~ ~ ' ~  ver i f ied t h a t  t h i s  equation i s  val id  

fo r  several materials (including 304 and 309 s ta in less  s t ee l s ,  T-111, 
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T-222, and Cb-l$ Z r )  by comparing creep rupture l ives  obtained a t  high 
constant temperatures and constant s t r e s s  with those a t  the same t e m -  

perature but constant stress rate .  These data serve, indirectly,  t o  

validate Eq. (2 ) .  

constant s t r e s s  ra te  experiments by d i rec t  numerical integration i s  

described i n  Sect. 4.3. 
other materials and a t  lower temperatures by performing experiments i n  

which s t r e s s  and temperature are lrnown functions of time and evaluating 

the in tegra l  i n  Eq.  ( 2 )  either analyt ical ly  or  numerically. 

The use of the CAFSUL program t o  re-evaluate these 

The adequacy of the model can be tes ted f o r  

3.0 CAPSUL PROGRAM 

CAPSUL i s  a Fortran program f o r  the IBM 360/75 computer. The program 

calculates the l i f e  t o  a prescribed creep s t r a i n  and optimum dilllensions of 

alpha radioisotope f u e l  capsules exposed t o  varying s t r e s s  and temperature. 

The capsules (Fig. 2 )  a re  right cylinders with multilayered walls and 

e l l i p t i c a l  end caps. 
the capsule; X ( 2 ) ,  the thickness of the f u e l  layer; and X(4), the thickness 

of the p r i m r y  container w a l l .  

Independent variables a re  RO, the inside radius of 

The program has eight principal and eleven subsidiary subroutines. 

LSTSQ determines constants (a ,  K,  m )  i n  an equation fo r  rupture l i f e  (or  

l i f e  t o  a prescribed s t r a in )  as  a function of s t r e s s  and temperature by a 

l e a s t  squares f i t  of creep-ult imte strength data.  Once the constants a re  

determined, IsTsQ i s  normally bypassed f o r  calculations with the same 

m t e r i a l  and design l i f e  cr i ter ion.  The subroutine MAX'' uses a numerical 

Lagrange multiplier f o m l a t i o n  t o  find a maximum of one of three t h e r m 1  

power functions ( t h e m 1  power per un i t  projected area of a f l a t  array of 

capsules, per un i t  volume of a rectangular parallelepiped tha t  encloses a 

capsule and i t s  auxi l iary s t ruc tura l  m t e r i a l ,  o r  per un i t  weight of capsule, 
each calculated i n  subroutine WR) subject t o  a time-integrated s t ress -  
temperature constraint (subroutine DR) t ha t  i s  dictated by a prescribed 

rupture or s t r a i n  l i f e .  The subroutine RZERO calculates the allowable in- 

side radius as  a function of t h e m 1  power, i f  it i s  required tha t  the 
capsule surface temperature not exceed a given value i f  the capsule i s  

buried i n  an in f in i t e  medium of ear th .  The subroutine LIMIT examines the 
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dimensions of the optimized capsules f o r  adherence t o  limits dictated by 

engineering considerations. If the wall thickness or radius of the capsule 
i s  too small or  too large, the appropriate dimension i s  fixed a t  i t s  

nearest l i m i t  and MAX o r  the subroutine DF i s  used t o  determine the maximum 

power function i n  the remining variable( s )  . 
a single remaining variable t o  sa t i s fy  the stress-temperature constraint .  

The program subroutine THETAC calculates the rupture l i f e  o r  l i f e  t o  a 

prescribed s t r a i n  of a capsule with specified dimnsions. 

determine the l i f e  of capsules t h a t  have been optimized on the basis  of 

another cr i ter ion.  The subsidiary programs are  WHT, which calculates the 

weight of the f u e l  capsule; CONVEEMl and VSU, which convert the capsule 
dimension variables t o  and from the MAX nomenclature; and SETUP, GTAIAM, 

VECT, CONVG, OUTPUT, ARM", MATQ, and STEP, which are  used by MAX. Library 

subroutines a re  SQRT, ABS, ALOG, ALQGlO, SE'ITFAULT, and MP. 

The subroutine DF calculates 

It is  used t o  

The m i n  program, CAFSUL, reads and writes a l l  input data, guides 

the selection of subroutines f o r  prescribed options, and pr in ts  pertinent 

resu l t s .  
selection requires a complete complement of data cards and is  termed a 

"case." 

The program operates i n  any of four sequences. Each sequence 

There i s  no upper limit on the allowable number of cases per run. 

The sequence f o r  a given case i s  determined by an input integer, 

MOFT. 

l i f e  function (Fig. 1) by a least  squares analysis of creep data. The 

second sequence (MOFT = 2 )  f i ts  the creep l i f e  function and calculates 
optimum capsule dimensions for  a prescribed l i fe .  

(M3FT = 3) calculates optinmu capsule dimensions when the constants of the 

creep l i f e  function a re  given a s  input. 

calculates the l i f e  (or safety fac tor  f o r  a prescribed l i f e )  of a capsule 

with given dimensions and material properties. 

w i l l  describe the formulation of the subroutines f o r  these sequences and 

provide input information. 

The f irst  sequence (Mom = 1) is used t o  provide a f i t  of the creep 

The th i rd  sequence 

The fourth sequence (MOPT = 4)  

The following sections 

A l i s t  of the program i s  given i n  Appendix C .  

3.1  Least Squares Analysis of Creep Data (MOR = 1) 

This sequence begins with the reading of the constants MOFT, K, 

SIGU (uu) ,  and GAMMA (7 ) .  Next, the programs reads and s tores  information 
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from K data cards containing K t r i p l e s  [ SIGMA( I), T( I), THETA( I)] of 

creep and/or ultimate strength data.  
SIGU a re  not permitted. The m i n  program ca l l s  subroutine LSTSQ (which, 

i n  turn, ca l l s  MA%&) and values of the f i t t e d  constants (ALPHA, XM, XKO) 
are  computed. 

Values of SIGMcI(1) greater than 

The min program then computes the following quantit ies:  

1. 

2. 

3. 

4. 

5. 

6 .  

The value of stress, SIGB(I), predicted by the f i t t e d  creep 

l i f e  function f o r  each pa i r  [T( I ) ,  THETA(I)]. 

The value of l i f e ,  THETB(I), predicted by the f i t t e d  creep 

l i f e  function fo r  each pa i r  [SIGMA(I), T ( I ) ]  . 
The Urson-Miller parameter, 

IMP(1) = T(1)  loglo [ (XKO)(THETA(I))], f o r  each t r i p l e  of 
data. 

DLTH(I), the common logarithm of the r a t i o  "HETA(1) t o  

THEm( I). 

SIGB( I).  
D I S G ( I ) ,  the common logarithm of the r a t i o  SIGMA(1) t o  

SELTH, SELSG, and RESIG, the standard e r rors  i n  the comon 
logarithm of creep l i f e ,  common logarithm of s t ress ,  and 

relat ive stress, respectively. 

The quantit ies SELTH, SELSG, and RESIG are  calculated 

112 2 1  K r 1  

SIGMA(I) - SIGB(I) 

1 = 1  

as  follows: 

. 

The program pr in ts  the values K, SIGU, GAMMA, ALPHA, XM, xm, SELm, 

SELSG, and RESIG and the array I, SIGMA(I), T ( I ) ,  m m ( I ) ,  m(I), 
m m (  I), SIGB( I), DLTH( I), DUG( I ) .  
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The program then reads another data card containing the integer K. 

If the new value of K i s  greater than the previous value, the program 

reads an additional number of t r i p l e s  of creep data equal t o  the difference 

i n  the two values of K. These new data a re  stored together with the 

previous data and the en t i re  calculational procedure i s  repeated. This 

procedure, which permits a sequential analysis of data which are  ordered 

with respect t o  one of the variables [usually TKETA(I)], continues u n t i l  

the program reads a card with K = 0. 

program proceeds t o  the next case. 

After reading a card with K = 0, the 

Execution time of t h i s  sequence i s  l e s s  than one minute f o r  analysis 

of 500 (the maximm allowable) number of t r i p l e s  of creep data tha t  a r e  

read i n  a t  a single t i m e .  

This subroutine prepares the elements of a m t r i x  equation f o r  

determination of the constants AL,€"A(a), XM(M), and XKO(K) by a l e a s t  

squares analysis of the creep l i fe  function (Fig. 1). 

linearized by writing it i n  logarithmic form (see Appendix C ) .  

procedure i s  an approximation i n  the sense tha t  the sum of the squares 

of the residuals of the logari thms a re  minimized rather  than those of 

the or iginal  variables. 

The function i s  

This 

This subroutine solves the matrix equation AX = Y f o r  X using 

modified Gaussian elimination (pivotal  reduction using column pivots).  
CO-OP description of t h i s  subroutine i s  given by Clark and Kam. 

A 
10 

3.1.3 Input Informtion 

The sequence, = 1, uses only the data cards of type "a", I'b", 

and "c", shown i n  Table 1. The cards of type ''a'' and "b" a re  followed 

by K cards of type 
followed by stacks having a single card of type "b" followed by K1-K 

cards of type "c". Here, K' and K a re  the present and immediately pre- 

ceeding values of K, respectively. The l a s t  card of type "c" i n  a case 

''c". For sequential analysis the i n i t i a l  s e t  i s  

. 
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Table 1. The Forroet of Input Data Cards f o r  the CAF'SUL Program 

Card 
Type Format Mom Data 

a 

b 

C 

d 

e 

f 

g 

h 

i 

j 

k 

1 

m 
n 
0 

P 
9 

r 

S 

t 

3 E  
13,mio. 0 

p20.0 

&lo .o 
8F10.0 
~ 1 0 . 3 ,  213 
9 ~ 8 . 0  

9 ~ 8 . 0  

9 ~ 8 . 0  

910.0 

4F10.0 

4E20.0 

4E20.0 

4E20 .O 

4E20.0 

5 14 
4F10 .O 

4E20.0 

4E20.0 

3~20 .0  

MOFT, NMAX, r\l& 

K, SIGU, GAMMA 

SIGMA( I), T( I), T " A (  I) 

GAMMA, RR, E, PS, H, ZM, TA 

T8, A, ETA, BETA, DELZA, C, G, TA1 

IAMDA, N, NN 

m), 1 = 1,9 
PO), 1 = 1,9 
XK(I) ,  I = 24.0 

ALPHA, YK, XM 

X4U, X4L, R3U, R3L 

SIGU, sc, su, PHI 

Q, DELRO, DELX2, DELX4 

TAU, ~ 8 1 ,  T82, X I 3  

RO, X(2L x(41, THET 
IX, NIAM, NITER, I T E R ,  MOST 

G, C, C R I T ,  ALAM 

Q, DEEI", DELX)ME, THMAX 

TAU, ~ 8 1 ,  XLD, RO 

x(2) ,  x(4), T m  

'. 

. 



is  followed by a card of type "b" with K = 0. 

by a card of type "art with MOFT = 0. 

The l a s t  case i s  followed 

3.2 Calculation of Capsule Dimensions f o r  Maximum Specific Power 

(MFT = 2 or  3) 

The sequence begins by reading and writing MOPT, NMAX, and N& plus 

46 normally unchanging constants. 
en t i r e  sequence f o r  MOFT = 1 t o  generate the three constants i n  the creep 

l i f e  function from experimental data; if MOPT = 3, these constants a r e  

read i n  and written. 

constants. 

the i n i t i a l  estimates of X ( 2 )  and X ( 4 )  such tha t  the constraining function 

i s  approximately sa t i s f ied  (0.3 5 D 5 4.0). The i t e r a t ion  proceeds by 

multiplying the previous value of X(2) by 0.95 if D i s  too large or  by 

multiplying the previous X ( 2 )  by 1.05 and the previous X(4) by 0.95 i f  D 

i s  too small. The calculation stops, p r in ts  pertinent data, and proceeds 

t o  the next case if an appropriate value of D i s  not determined i n  100 

i te ra t ions .  

If MOFT = 2, the program c a l l s  the 

The program then reads and writes an additional 29 

Next, the program i t e ra t e s  (cal l ing VSU and DR) t o  modify 

The subroutine VSU generates a set of independent variables [ A D (  K) 

and t h e i r  increments, DEL(K) and WEL(K)] f o r  the MAX format from the 

capsule-dimension variables. The set of capsule-dimension variables t o  

be used i n  a case i s  determined by the integer NMAX. 

w=1 Variables a re  ROY X ( 2 ) ,  and X ( 4 ) .  

NM4x = 2  Variables a re  RO and X ( 2 ) .  

m = 3  

N M A x = 4  

NMAx=5 

The ou te r  radius R ( 8 )  i s  specified. 

option i s  used t o  generate capsules with given 

outside dimensions . 
This 

The radius R(3) i s  specified. 

The radius RO i s  t o  be computed by the sub- 

routine Z E R O ,  assuming tha t  the capsule i s  

buried i n  an in f in i t e  medium. 
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The subruutine DR performs a numerical i n t e g a t i o n  of Eq. (2)  and 

The subroutine DR ca l l s  the subroutine CONVERT i f  "MIX # 0 

generates a value of the constraining function D f o r  a current set Of 

variables.  

and I&l # 0. 

dimensions, depending on the value of NMAX. If NMAX = 5, the subroutine 
CONVERT ca l l s  the subroutine Z E R O  t o  generate a burial-limited value of 
RO tha t  is  compatible with the current values of X ( 2 )  and X ( 4 ) .  

The subroutine CONVERT reconverts the MAX variables t o  Capsule 

The main program ca l l s  the subroutine MAX if values of the variables 

MAX are  determined tha t  approximately sa t i s fy  the constraining equation. 

uses a numerical Lagrange multiplier formulation t o  f ind stationary values 
of the function W subject t o  the constraining equation D = C ( C  i s  the 

constrained value). The numerical technique seeks a minimum i n  a defined 

function YSQ by mking successive l inear  approximtions along the path of 

steepest  descent. 

when the constraining equation is  sa t i s f ied  and the gradients of the 

functions D and W are paral le l ,  the condition f o r  a loca l  maximum o r  

minimum i n  the function W. The function W i s  t o  be maximized i n  the 
present calculation; the minimum value i s  zero i f  X(2) = 0. 

proceeds by making outer and inner i t e ra t ions .  

(counted by M) a re  steps i n  the domain of the function YSQ resul t ing from 
the l inear  approximation. 

overstepping which might r e su l t  i n  a divergent sequence. 

The function YSQ i s  the square of a vector t ha t  i s  zero 

The calculation 

The outer i t e ra t ions  

Inner i t e ra t ions  (counted by ISTOP) prevent 

The subroutine MAX ca l l s  the subroutines DR and VR t o  generate values 

of the constraining function D and the thermal power function W f o r  use 

i n  t e s t s  and numerical computation of derivatives.  

a given case i s  chosen by the input integer N&: 
The function W f o r  

m = 1  Thermal power per u n i t  of projected area 

(w = W l ) .  

m = 2  Thermal power per u n i t  volume of a circumscribed 

rectangular parallepiped ( W  = W )  . 
Them1 power per u n i t  of weight ( W  = W3). N Q = 3  

After each i te ra t ion ,  MAX writes current values of the following 
quantit ies : 
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M 

D 

W 

YSQ 

Number of the outer i t e ra t ion .  

Value of the constraining function. 

Value of the thermal power function (Wl, W2, 

o r  W3, depending on I@) tha t  i s  t o  be 

maximized. 

The function which has a value of zero 

a t  the desired solution point. The square 

of a vector Y. 
2 

Z YSQ .C (equal t o  YSQ f o r  C = 1) 

ISTOP Number of the inner i t e r a t ion  within the 

outer i t e r a t ion  M. 

y( K) Components of the solution vector Y. 

ALl?(K), K = 1,NR Values of the independent variables and the 

Iagrange multiplier.  

NI), I = 0,9 Outer radius of the nine regions of the 

capsule. 

L kng th  of the capsule. 

AV2 Thermal power of the capsule. 

m, w, w3 The specific thermal power functions. 

WT Weight of the capsule. 

The M4.X calculation stops when e i the r  the function YSQ becomes 
2 smaller than a prescribed convergence cr i ter ion,  (CRIT)  , or  a prescribed 

number of inner ( M  5 ITER) and outer ( LMOST 5 ISTOP) i te ra t ions  is  exceeded. 

It i s  reconmended tha t  the present type of calculation be stopped by the 

number of i t e ra t ions  since it i s  very d i f f i c u l t  t o  predict  an acceptable 

maximum value of the solution vector. The selection of a maximum allowable 

number of i t e ra t ions  has one disadvantage; it i s  often the case tha t  

variables determined in  other than the l a s t  i t e r a t ion  provide a better 

solution of the problem. 
described a f t e r  each i terat ion,  the "best" set of dimensions can be 

Since the properties of the capsule a re  completely 
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determined by reviewing the printed matter and selecting the i t e r a t ion  

f o r  which (1) the constraint D = 1.00 i s  approximately sat isf ied,  (2)  the 

value W is  maximum, and (3) YSQ is  minimum. 

When the MAX calculation stops, control is  returned t o  the main 

program. 
subroutine LIMlT t o  determine if  the variables R ( 3 )  and X ( 4 )  a re  within 
the preselected domins R3L 5 R ( 3 )  I R3U and X 4 L  5 X ( 4 )  5 X4U. 

variables [ f i r s t  X ( 4 ) ,  then R ( 3 ) ]  a re  too small or too large, the 

appropriate dimension i s  fixed a t  i t s  nearest l i m i t ;  NMAX i s  changed t o  

r e f l ec t  a decrease i n  the number of independent variables; and control i s  
returned t o  the main program. 

value 2 o r  4), the en t i re  calculation i s  repeated ( s t a r t i ng  with the 
i t e r a t ion  t o  determine suitable values of the variables and proceeding 

in to  the MAX subroutine) using the l a s t  computed values of RO and X ( 4 )  

o r  X ( 2 )  and X ( 4 )  as i n i t i a l  estimates. 

was 2, 3, 4, o r  5, the routine DF i s  called t o  calculate a value of the 

single remaining independent variable, X ( 2 ) ,  t ha t  s a t i s f i e s  the constraining 

equation, DH = 1.00. 

writes a f i n a l  l i s t  of the variables; these numbers a re  d i f fe ren t  from 
those computed i n  the las t  MAX i t e r a t ion  only i f  the program DF has been 

called . 

The l a s t  set of calculated dimensions are  then examined by the - 
If the 

If the previous value of NMAX was 1 (new 

If the previous value of NMAX 

When the calculation i s  completed, the main program 

The MAX calculational procedure does not insure convergence t o  the 

constrained mximum value of the function W. If the investigator i s  

unsure of the neighborhood of the solution point, he should submit 
several  cases with d i f fe ren t  i n i t i a l  estimates of the variables.  IT 
r e su l t s  are  e r ra t ic ,  the tolerance limits on the functions (PHI and Q )  
may not be suff ic ient ly  small. 

and DELX4)  must be chosen such as t o  cause only small changes i n  the 
functions. 

Increments i n  the variables (DELRO, DELX2, 

The execution t i m e  of t h i s  sequence f o r  100 i te ra t ions  (inner plus 
outer) with 100 i n i t i a l  increments ( N )  i n  the domain of integrat ion i s  

approximately 3.5 minutes. 
t i ona l  t o  the product of I T E R  and N. 

The execution time i s  approximtely propor- 



3.2.1 DR - 
Subroutine DR calculates the value, DH, of the constraining function, 

D, using Simpson's rule with N increments. 
the function, the more important in te rna l  dependent variables (the integrand 
and stress and temperature functions ) follows . 
a re  relegated t o  the l is t  of the subroutine (Appendix C ) .  

defined i n  Appendix A. 

An abbreviated formulation of 

More specif ic  formulations 

Symbols a re  

TERM 
D H =  

TNIT 
F d t  

1 - -  1 

a U 7 - su7a7 J 

T4 = TA + (T40 - TA)emAT 
AV2 T4O = T8 + - 27r.Z 

J = 4  

DR doubles the number of increments i n  the domain of integration a 

The input maximum of 16 times t o  sa t i s fy  a convergence cr i ter ion,  PHI. 
number PHI i s  compared t o  the r a t i o  of the difference i n  the last two 

values of D t o  the l a s t  value. The statement "failed t o  converge" i s  
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written i f  1 6 ~  increments a re  not suff ic ient .  
SEWAUL!T i s  used t o  set exponential underflows t o  zero. 

The l ib rary  subroutine 

The subroutine DR w i l l  accommodate functions other than those f o r  

which it i s  primarily intended (constant stress and/or temperature and 

constant derivatives of stress) by such devices as  redefining the constants, 

se t t ing  T8 = TA, and dropping terms by se t t ing  leading constants equal 

t o  zero. 
of logarithms (including values tha t  a r e  t o  be raised t o  a power) and 
division by zero. 

In mking such formulations, one must avoid negative arguments 

3.2.2 WR - 
This subroutine calculates values of one of three specif ic  thermal 

power functions fo r  use a s  the function W i n  MAX. 

is determined by the current value of NQ. 

with N4 = 0, the  values of a l l  three thermal power functions a re  cal- 
culated. If m = 3, the subroutine ca l l s  subroutine WID t o  calculate 

the capsule weight. 

Choice of the function 

If the subroutine is called 

The three functions a re :  

1 = 1  

3.2.3 DF - 
This subroutine uses Newton’s method t o  calculate a value of X(2) 

t o  s a t i s fy  the constraint D = 1. The calculation proceeds u n t i l  D - 1 5 Q .  
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3.2.4 RUB0 - 
This Subroutine calculates RO from the following equation tha t  r e l a t e s  

the outside radius of a cylindrical  capsule buried i n  an in f in i t e  conduct- 
ing medium t o  the thermal power and temperature difference (difference 

between the m a x i m  capsule surface temperature and ambient temperature 

of the conducting medium). 

In  t h i s  equation AV2 (see l i s t  f o r  subroutine WR) is  a function of 
The variable RO i s  i n i t i a l l y  estimated by an approximte formula and RO. 

then calculated by i t e r a t ion  using Newton's method u n t i l  the re la t ive  

change i n  AV2 is  l e s s  than 10 or 10 i te ra t ions  have occurred. Conver- 

gence i s  normally accomplished i n  less than five i te ra t ions  because the 

i n i t i a l  approximation i s  good and the derivatives a re  computed analyt ical ly .  

If the current values of the variables X(2) and X(4) are  such tha t  RO is  

negative, RO is s e t  equal t o  0.2. 

-6 

3.2.5 LIMIT - 
This subroutine examines the l a s t  set of variables computed by M U  

t o  determine if  X(4) and R(3) a re  within the preselected domains 

X4L 5 X ( 4 )  5 X4U and R3L 5 R ( 3 )  5 R3U. 
and X(4) i s  too large or  too small, the variable X(4) i s  set a t  i t s  

nearest l imi t  and the en t i r e  MOPT sequence i s  repeated f o r  NMAX = 2. 

the current value of NMAX i s  1 and X4L 5 X(4) 5 X4U, but R( 3) i s  too 

large or  too small, the variable R(3) i s  set a t  i t s  nearest l imit  and 

the calculational sequence i s  repeated fo r  NMAX = 4. 
of NMAX i s  2 and R ( 3 )  i s  too large or too small, R(3) i s  set a t  i t s  nearest 

limit and the independent variable X ( 2 )  i s  calculated t o  sa t i s fy  the 

constraint  D = 1.00. 

i s  too large or  too small, X ( 4 )  is  s e t  a t  i t s  nearest l imi t  and X(2) is, 

again, calculated by the subroutine DF. 

If the current value of NMAX is  1 

i% 

E the current value 

If the current value of NMAX is  3, 4, o r  5 and X(4) 
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3.2.6 - w 
This subroutine calculates the radi i ,  length, and wefght of the f u e l  

capsule using the current values of the variables RO, X(2), and X(4). 
weight, WT, i s  calculated a s  the sum of the product of volume and density 

of each region. 

The 

3.2.7 VSU, COMrERT 

These two subroutines convert the capsule dimnsion variables t o  

and from the variables used i n  MAX. 
NMAX, VSU generates the variables ALF(K) from RO, X(2), and/or X ( 4 )  and 
the increments DEL(K) = WEL(K) from DELRO, DEWC2, and/or DEIX4. 

reconverts t o  capsule dimensions and ca l l s  ZERO if NMAX = 5 .  

Depending on the current value Of 

CONVERT 

3.2.8 MAX - 
The MAX program, used a s  a subroutine i n  the CAPSUL program, was 

written by F. H. S .  Clark and F. B. K. Kam of ORNL. 
t o  t h e i r  reportlo or t o  the program l i s t  (Appendix C )  f o r  detailed in- 

formation. 

MAX and a few changes tha t  Were made i n  the program f o r  use i n  CAPSUL. 

The reader i s  referred 

The following will describe the sequence of calculations i n  

The main routine MAX begins by computing numbers tha t  a r e  t o  be 

used as convergence c r i t e r i a  and se t t i ng  the outer i t e r a t ion  index M 

equal t o  one. SETUP, which ca l l s  the 
subroutines DR and WR, produces values of the functions D and W and a l l  

t h e i r  first and second derivatives a t  the current t r i a l  s e t  of independent 

variables, ALF(K). 

mde on the input number NIAM. 
called t o  generate an i n i t i a l  estimate of AIAM, the Lagrange multiplier.  
A value of NIAM other than zero signals t ha t  the i n i t i a l  estimate of 
AIAM has been provided a s  input. 
generate components of the solution vector Y. 

Subroutine S E W  i s  then called. 

When control returns from SETUP t o  MAX, a test i s  
If NLAM = 0, the subroutine GTALAM is  

Subroutine VECT i s  called next t o  

Subroutine CONVG is  next called.  This subroutine tests t o  determine 

if YSQ i s  less  than the product of G (< 1) and i t s  value i n  the previous 

i te ra t ion .  
computed product, o r  ( 3 )  the input integer IMOST i s  equal t o  zero (a 

If e i the r  (1) M i s  equsl t o  one, (2 )  YSQ is less than the 

- ,  
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change), an index, JWAY, i s  set equal t o  one. If these c r i t e r i a  a re  not 
sat isf ied,  JWAY i s  set equal t o  zero and the components of the s tep tha t  

was l a s t  made i n  the domain of the function Y are  multiplied by 0.5. 

index JWAY i s  s e t  equal t o  -1 if the number of these (JWAY = 0) inner 

i t e ra t ions  has exceeded the input integer, IMOST. 

After CONVG, subroutine OzTTmTT writes current values of the pertinent 

The 

indices, variables, and functions and returns control t o  MU.  The MAX 

program then tests the index, JWAY, t o  determine whether t o  stop the case 

and proceed t o  the next one (JWAY = l), t o  t r y  an inner i t e r a t ion  with a 
reduced step i n  the domain of the function (JWAY = 0), or  t o  proceed with 

convergence tests (JWAY = 1). E JWAY = 0, the function YSQ is reevaluated 

with the reduced increments u n t i l  either the conditions f o r  JWAY = 1 or 

-1 are met. 

If JWAY = 1, t e s t s  are  made t o  determine i f  the t r i a l  solution is 

converged or  i f  the prescribed number ( ITER)  of outer i t e ra t ions  i n  M 

have been made. 

the calculation i s  halted and input f o r  the next case i s  called. 

subroutine ARITH i s  called. 

a r e  evaluated a t  the new t r i a l  point. 

This solves fo r  X the matrix equation (A)X = Y,  

by one and subroutine STEP is  called, with subsequent operations following 

as previously described. 

If either of these questions i s  answered a f f i m t i v e l y ,  
Otherwise, 

In t h i s  subroutine elements of a matrix ( A )  

Next, subroutine MAlQ i s  called. 

The index M i s  increased 

3.2.9 Input Information 

The sequence f o r  MOPT = 2 or  3 requires, i n  order, one each of the 

data cards "a" and "d" through "i" (Table 1). For MOPT = 2, these i n i t i a l  

cards are followed by cards of type "b" and "c", stacked i n  the same order 

a s  f o r  MOPT = 1; again, the l a s t  card of type "c" i s  followed by a card 

"b" with K = 0. The next card, of type "j", i s  included only if MOPT = 3. 
One each of the remaining data cards of type "k" through "q" then follows 

f o r  e i the r  MOPT = 2 o r  3. 
I 1  a I 1  with MOPT = 0. The input constants ~81, TA1, and NN are  not used 

f o r  MOPT = 2 o r  3; consequently, these f i e lds  may be l e f t  blank. 

The l a s t  case i s  followed by a card of type 
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3.3 Capsule Ufetime Analysis (MOFT = 4) 

This sequence begins by reading and writing 67 input constants, the 

first of which is  MOF'J! (MJUUC and NQ must be zero). 
the subroutine THETAC . 
method with an i n i t i a l  estimate of l ife,  "ET, t o  calculate a value of 

the resultant l ife,  =A, that s a t i s f i e s  the constraint D = 1.00. In 
t h i s  case, D is the sum of two  integrals .  The first  integral ,  over the 

time domin from zero t o  the input number TAU, uses the value T8 a s  the 

i n i t i a l  steady s t a t e  temperature of the outer surface of the capsule and 
TA a s  the temperature of the environment, The second integral ,  over the 

time period TAU t o  THET, uses ~ 8 1  a s  the i n i t i a l  (time zero) steady s t a t e  
temperature of the surface of the capsule and TA1 a s  the temperature of 
the environment. 

The program then c a l l s  
This subroutine uses the subroutine DR and Newton's 

A value of TAU = 0 sets the f irst  in tegra l  equal t o  zero. 

If, on any i terat ion,  THET is  larger  than an input constant, THMAX, 
and D i s  less  than one, THET is set equal t o  "MAX and a new variable, 

OMEGA, is computed by Newton's method t o  sa t i s fy  the constraint  D = 1. 

OMEGA is  a number tha t  multiplies the safety factors  SC and SU. 

After each i terat ion,  the program writes the current values of e i the r  

THETA, D, and the contribution of the second in tegra l  t o  D; or THMAX, D, 

and OMEGA. The calculation stops and returns control t o  the main program 
when D - 1 i s  less than the input number, Q. 

1 Execution time of the program with N = NN = 100 i s  generally less  
than 20 seconds. 

The sequence f o r  MOFT = 4 requires, i n  order, one each of the data 
cards "a1', "d" through "j", "l", and "rrr through "t" (Table 1). 

l a s t  case i s  followed by a card of type Itatt with MOFT = 0. 
The 

4.0 IIESUEI'S OF ANALYSIS OF' CREEP DATA 

Creep data fo r  several  alloys have been analyzed t o  confirm the 

appl icabi l i ty  of the model used i n  the CAPSUL program. 

sections w i l l  present a s t a t i s t i c a l  analysis of the predicted creep l i f e  

functions f o r  three commercialmaterials, an analysis of the e r rors  i n  

t i m e  extrapolations, and resu l t s  obtained i n  predicting constant stress 
ra te  data from conventional, constant stress, creep data.  

The following 
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4.1 Predicted Creep Life Functions 

Creep l i fe  functions f o r  three commercial alloys (304 s ta in less  

s tee l ,  Hastelloy N, and Cb-l$ Z r )  were generated using the MOFT = 1 option 

of the CAPSUL program. 

304 s ta in less  s t e e l  (Fig. 3) was made using 189 reduced creep data points 

f o r  18 heats of bar and plate,  covering the temperature domain from 900 t o  

17009 and rupture l i f e  t o  100,000 hr. 

intervals,  were generated by interpolation o r  extrapolation of the larger  

body of experimental creep data f o r  a given heat of material and tempera- 

ture. 
ments terminated a t  approximately 100,000 hr. 

points were obtained by extrapolation of data from experiments terminated 

a t  e a r l i e r  times i n  the 10,000 t o  100,000-hr decade. The constants y and 

0 were chosen pr ior  t o  the least  squares analysis t o  force a f i t  of the 

ultimate strength vs temperature (0.1-hr rupture) data i n  the temperature 

domain above 400%’. 
function (Fig. 4) shows that the f i t  is  good over the en t i re  range of the 

variables. 

logarithm of the measured l i f e  and s t r e s s  with respect t o  values predicted 

by the f i t t e d  function is  approximately gaussian, The dis t r ibut ion of the 

e r ror  i n  re la t ive  s t r e s s  is also approximately normal; the re la t ive  standard 

er ror  i n  s t r e s s  i s  0.17 (6% confidence level) .  

The f i t t e d  creep l i f e  function f o r  rupture of 
11 

The reported data, a t  decade 

Only three of the 100,000-hr data points were obtained from experi- 

The other th i r teen  data 

U 

A parametric p lo t  of the derived creep rupture 

The frequency dis t r ibut ion of the e r ror  (Fig, 5 )  i n  the 

The f i t t ed  creep l i f e  function (Fig, 6)  f o r  rupture of Hastelloy N 
(INOR-8) was made using 93-data points 

and plate,  covering the domains i n  temperature from 1100 t o  18009 and 

rupture l i f e  t o  14,400 hr .  

and data a t  four temperatures i s  shown i n  Fig. 7. In t h i s  case, the 

d is t r ibu t ion  of e r ror  (Fig. 8) is  not gaussian, but the frequency peaks 
on both sides of the f i t t e d  function. 

the f a c t  that approximately half of the data were obtained with the 

commercial Hastelloy N a l loy which i s  somewhat stronger than the i n i t i a l  

version of the alloy, which was called INOR-8. 

frequency dis t r ibut ion i s  gaussian, the re la t ive  standard e r ror  i n  

s t r e s s  i s  0.16. 

f o r  f ive  heats of rods, sheet, 

A parametric p lo t  of the predicted function 

This phenomenon i s  explained by 

E it is assumd that the 
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Fig. 3. Master Larson-Niller P l o t  f o r  Creep Rupture i n  
304 Stainless Steel ,  18  heats. 189 data points. 1360 < T i 2160. 
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Fig. 4. Parametric Plot of the Derived Creep Rupture Function 
for 304 Stainless  S tee l  Compared with Experimental Data. 
bar and plate .  

18 heats of 
1360 6 T 6 2160. 0 6 100,000 hr. 
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The creep l i f e  function f o r  rupture of Cb-l$ Z r  (Fig. 9 )  was 

generated using data l4’l5 from 25 heats of sheet, bar, and plate,  covering 

the temperature domin from 1600 t o  22009 and rupture l i fe  t o  1733 hours. 

The abnormally large amount of s ca t t e r  i n  the data, shown i n  the parametric 

p lo t  (Fig. lo), is caused, prirnarily, by changes tha t  were mde i n  the 

composition and heat treatment of the al loy tha t  resulted, accidentally 

or  deliberately, between the periods of tes t ing ,  

of the e r ror  (Fig. 11) is approximately gaussian. 

e r ro r  i n  s t ress  i s  0.14. 

The frequency d is t r ibu t ion  

The re la t ive  standard 

The analysis of these creep data indicates t ha t  the general creep 

l i f e  function chosen f o r  the model can provide a good description of 
constant stress,  constant temperature creep behavior i n  304 s ta in less  

s t ee l ,  Hastelloy N, and Cb- l$  Z r .  

have correlated creep data with the Iarson-Miller parameter (but, generally 

not extending the f i t  i n to  the ultimate strength range), w e  assume t ha t  

the sane conclusion will apply t o  many other metals and alloys (probably 

including most alloys of copper, nickel, iron, aluminum, and the re- 

fractory metals). 
strength data are  useful f o r  complementing the creep data i n  the high- 

s t ress ,  low-temperature region. 

495 Based on the resu l t s  of others who 

It i s  apparent from the analysis t ha t  the ultimate 

The parametric p lo ts  of the f i t t e d  functions and data show tha t  

the dis t r ibut ion of data with respect t o  the f i t t e d  functions tends t o  

be random i n  that  the re la t ive  e r ror  does not vary s ignif icant ly  over the 

domain of the variables. 

d i s t r ibu t ion  function is most nearly gaussian when either one heat or  

rnany heats of an al loy a re  analyzed. 

from gaussian behavior i f  only a few heats of material, of varying 
properties, are analyzed. 

In  general, we have found tha t  the frequency 

There may be s ignif icant  deviation 

4.2 Analysis of Errors i n  Time Extrapolations 

The accuracy of the model f o r  extrapolation of creep l i f e  i n  the 

three commercial alloys was investigated by making f i t s  of constant 

s t r e s s  and temperature creep data with rupture l i f e  l e s s  than a selected 

time; using these f i t t e d  functions t o  predict  the stress as a function of 
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temperature t o  cause rupture a t  a greater t i m e ;  and comparing the pre- 

dicted stress with the actual  average s t r e s s  which caused f a i lu re  a t  the 

greater t i m e .  

the m a x i m  relat ive e r ror  (or bias)  i n  the predicted s t r e s s  a s  a function 

of temperature, i s  then compared t o  the standard e r ror  (e r ror  a t  67 percent 

confidence level  since the dis t r ibut ion of s t r e s s  data i s  approximately 
gaussian) i n  re la t ive stress caused by the normal sca t te r  of data about 

the predicted best-fit function. The m o d e l  is  then known t o  provide fo r  

adequate extrapolation of creep within the time range such that the bias  

i n  the predicted s t ress  i s  small a s  compared t o  the standard e r ror .  

The accuracy of the extrapolation, expressed i n  terms of 

The first column of Table 2 shows the material, number of heats, and 

The next two temperature range of the creep data tha t  were analyzed. 

columns show the values of the selected t i m e s  and the corresponding number 

of data points (with rupture l i f e  less than the selected t i m e )  f o r  which 

bes t - f i t  functions were evaluated. The fourth column shows the values of 

ruplxre l i f e  for  which stress as  a function of temperature was predicted 

by the model. 
stress f o r  each of best-fit functions. The l a s t  column shows the maximum 

bias  i n  the predicted stress, defined as the r a t i o  of the maximum di f -  
ference between the predicted and mean-measured stress t o  the mean-measured 
s t r e s s  within the temperature range of the experiments. 

The f i f t h  column shows the standard e r ror  i n  re la t ive  

Two very striking, but tenuous, conclusions m y  be drawn based on 
the resu l t s  of Table 2 .  

1. It appears that , for  a large number of metals, the present 

creep m o d e l  can provide a f i t  of creep data such t h a t  the 

standard e r ro r  i n  re la t ive  s t r e s s  w i l l  not exceed 15 t o  17 
percent. 

frequency d is t r ibu t ion  function w i l l  permit the choice of 
a design s t r e s s  f o r  a predetermined confidence level.  

Knowledge of the s t a t i s t i c s  of the f i t  and the 

2. In each of the commercial alloys analyzed, the bias  i n  

predicted stress f o r  a long-time extrapolation becomes 
small, using only 100 t o  200-hr creep data. For these 

alloys, the creep data f o r  times greater  than 100 t o  200 
hours i s  superfluous. The data Seem t o  suggest t ha t  if 
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creep data a re  

time (1 t o  200 

available t h a t  span two t o  three decades i n  

hours, f o r  example), then a f i t t e d  €'unction 

can be determined tha t  w i l l  permit extremely long extra- 

polations i n  time with the e r ror  of the extrapolation being 

less  than the normal sca t t e r  i n  moderate-time creep rupture 

data. This conclusion assumes, of course, t h a t  the long- 
term environment i s  the same a s  the test environment. 

The data a l so  suggest a possible method f o r  avoiding experiments 

of unnecessarily long term i n  creep determinations. 

wwld begin by generating f irst  short ti=; then, progressively, longer 

t i m e  data. The composite data would then be fi t ted,  sequentially, a s  

each new, longer-time data point i s  generated; and the f i t t ed  function 

m l d  be used t o  predict  the conditions t o  cause f a i lu re  (or a given 

s t r a in )  a t  a very long t i m e  (perhaps 100,000 hours). 

would be terminated when suff ic ient  data a re  generated such tha t  sequen- 
t i a l  data cause small and random (as opposed t o  monotonic) changes i n  
the predicted conditions t o  cause long-term fa i lu re .  

The creep program 

The creep program 

4.3 A n a l y s i s  of Constant Stress Rate T e s t s  

The accuracy of the model i n  predicting creep, under conditions of 

varying s t ress ,  was investigated by analyzing constant stress r a t e  tests 
with the CAFSUL program. 

time t o  1 percent s t r a i n  of the a l loy  FS-85 exposed t o  a constantly 

increasing s t ress  r a t e  and constant temperature were calculated (Fig. E) 
using a creep l i f e  function tha t  was generated using conventional creep 

and ultimate strength data 
The predicted s t r e s s  ra tes  agree wlth the neasured data f o r  the a l loy  

T-222 wlthin experimental error .  

factory, but it appears t ha t  the predicted r e su l t s  a re  biased a t  the 

par t icular  temperature a t  which the experiments were conducted. 

The time t o  rupture of the a l loy  T-222 and 

over a wide range of stress and temperature. 

Agreement with the 233-85 data i s  s a t i s -  

8 McCoy has analyzed these same creep data using a simpler, but l e s s  

general, model. McCoy f i t t ed  conventional creep data, a t  the specif ic  

temperature of interest ,  by assuming tha t  the logarithm of s t r e s s  i s  
l inear ly  related t o  the logarithm of the creep l i f e ,  an assumption t h a t  
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i s  equivalent t o  the assumption used i n  the present mthod if the temper- 

ature  i s  high. 

those predicted by the present mthod i n  sp i te  of the f a c t  t ha t  h i s  model 

was based on data only fo r  the specific temperature of in te res t .  McCoy 

required two equations t o  provide a good f i t  of the  FS-85 data over the 

stress r a t e  domin of the experiments. 

McCoy's predictions are  a l so  good, but no be t te r  than 

The procedure fo r  determining the 1-percent-creep function f o r  the 

FS-85 i s  shown as  an example of the MOPT = 1 sequence of the CAPSUL 

program i n  Appendix B. 
calculations fo r  rupture of the T-222 a l loy as  an example of the MOFT = 4 
sequence. 

Also shown i s  one of the constant s t r e s s  r a t e  
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APPENDIX A 

Units and Glossary of Symbols 

A, AO, A2 

AIAM, A D ( =  + 1) 

A I F ( K ) ,  K = 1,19 

ALPHA, a 

AV2 

BETA 

c 

CRIT 

D, DH 

DEL(K), K = 1,19 

DELL)ME 

DELTA 

Units - 
Length - inch 

mss - pound 

Time - hour 

Temperature - degrees Bnkine 

Heat - Btu 

Thermal power per un i t  of f u e l  region. 

The Lagrange multiplier.  

Independent variables i n  MAX. 

The f i t t e d  value of creep s t r e s s  f o r  a 
Larson-Miller parameter of zero. 

Thermal power of the f u e l  region. 

One -ha If the surface -to-surface distance 
between pa ra l l e l  columns of capsules. 

Constrained value of DH. 

An input value of a convergence c r i te r ion  
f o r  MAX. 

Value of the constraining function, Eq. ( 2 ) .  

The increment i n  the variables A I F ( K )  i n  
calculating DH. 

The increment i n  OMEGA. 

Thickness of the s t ruc tura l  l i ne r  surrounding 
the capsule. 

DELRO The increment i n  RO. 
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DELTH 

DELX2 

DEIX4 

DISG(  I), I = 1,500 

DLTH( I), I = 1,500 

E 

ETA 

F 

G 

-, 7 

H 

I 

Ix 

J 

JAM 

K 

L 

I2 

L4 

IAMDA, h 

The increment of THET. 

The increment i n  X (2 ) 

The increment i n  ~ ( 4 ) .  

The common logarithm of SIGMA( I)/SIGB( I) 

The common logarithm of T m A (  I)/THETB( I) 

Capsule weld efficiency. 

Volume f ract ion of gas space i n  the f u e l  
region. 

Integrand of the constraining function. 

A number s l igh t ly  less than 1.0 i n  the 
convergence c r i te r ion  for MAX. 

A constant i n  F, usually 1.0 or 2.0. 

Weight f ract ion of alpha-emitting isotope 
i n  the fue l .  

An index. 

PIPutimun number of outer i terat ions i n  MAX. 

Number of independent variables i n  MAX. 

An index. 

An integer t h a t  counts and limits t o  100 
the number of i t e ra t ions  t o  adjust  input 
estimates of X(2) and X ( 4 )  such t h a t  
0.3 5 DH 54 .0 .  

Miximum number of data points i n  ISTSQ. 
Elsewhere an index. 

An index i n  THETAC. 
fuel  capsule i n  the main program. 

Overall length of the 

Length of fueled section of capsule. 

k n g t h  of the s t ra ight  section of the 
capsule. 

Decay constant of the radioisotope. 
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WST 

LMe(I), I = 1,500 

ISTOP 

M 

Mom 

N, " 

NITER 

NIAM 

NQ 

NR 

OMEGA, X K ( 1 )  

Msximrn number of inner i t e ra t ions  i n  MAX. 

Value of the Iarson-Miller parameter. 

An index which counts inner i t e ra t ions  i n  
MAX. 

An index which counts outer i t e ra t ions  i n  
MAX. An index i n  RZERO. 

An input index which decides the sequence 
t o  use i n  the m i n  program 

The i n i t i a l  number of (even) increments f o r  
Simpson's rule integration i n  DR. 
MOPT = 2 or 3, N i s  the i n i t i a l  number of 
increments i n  the time domin 0.0 t o  THET. 
If MOFT = 4, N i s  the i n i t i a l  number of 
incremnts i n  the domain 0.0 t o  TAU and NN 
i s  the i n i t i a l  number of increments i n  the 
domin TAU t o  THET. 

If 

An input index t o  determine if a convergence 
c r i te r ion  i s  t o  be used i n  MAX. 

An input index t o  determine if GTAIAM i s  t o  
be used t o  e s t i m t e  the i n i t i a l  value of 
the Iagrange multiplier.  

An input index tha t  specifies the s e t  of 
independent capsule dimension variables 
that  a re  subject t o  optimization. 

An index tha t  causes additional creep data 
cards t o  be read and analyzed by ISTSQ 
together with data previously i n  storage. 

An input index tha t  decides the function t o  
be mximized. 

The index of the Iagrange multiplier, M + 1. 

A number tha t  multiplies the safety fac tors  
SC and SU i n  THETAC t o  sa t i s fy  DH = 1.0 i f  
THET > THMAX. 

Density of the material i n  region I of the 
capsule. 

An input convergence c r i te r ion  for the 
Simpson's Rule integration i n  DR. 



I n i t i a l  pressure i n  the f u e l  capsule. 
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F5 

Q 

R ( I ) ,  I = 1,8 

RES I G  

RK 

RO 

SEISG 

SIGB(I), I = 1,500, 0 

SIGMA( I), I = 1,500 

S IGT 

SIGU,  uu 

su, su 

T, t 

T ( I ) ,  I = 1,500 

TA 

An input convergence c r i te r ion  on DH f o r  
use i n  the subroutines DF and THETAC. 

Outer radius of region I of the capsule. 

The standard e r ror  i n  re la t ive stress for  
the f i t t e d  creep l i f e  function. 

YSQ-G, a tes t  quantity i n  MAX. 

The outer radius of the void region of the 
capsule. 

The imposed lower limit f o r  the outer radius 
of region 3 of the capsule. 

The imposed upper l imit  f o r  the outer radius 
of region 3 of the capsule. 

The safety factor  on creep stress. 

The standard e r ror  i n  the common logarithm 
of creep l i f e  f o r  the f i t t e d  creep l i f e  
function. 

The standard error i n  the common logarithm 
of s t r e s s  f o r  the f i t t e d  creep l i f e  function. 

The value of s t r e s s  predicted by the f i t t e d  
creep l i f e  function f o r  the values T ( 1 )  
and THETA(1). 

The measured value of stress i n  the input 
creep data. 

The current value of s t r e s s  a s  a function 
of t i m e  i n  DR. 

An imposed upper l i m i t  on stress a s  a function 
of the Larson-Miller parameter. 

The safety fac tor  on S I G U .  

Time since application of the s t r e s s .  

The measured value of absolute temperature 
i n  the creep data.  

Ambient temperature of the ear th  (MOPT = 2 or 3) 
and the first environment (MOPT = 4 ) .  
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TA1 

TAU 

TERM 

=, -, @ 

THETA(I), I = 1,500 

=(I), I = 1,500, e 

THMAX 

TNIT 

TS 

TO 

T4 

T40 

T 8  

~ 8 1  

Ambient temperature of the second environment 
(MOIYT = 4), see ~ 8 1 .  

Lifetime i n  the i n i t i a l  service environment 
f o r  use i n  THETAC . 
The upper limit of the in tegra l  i n  DR e i ther  
TAU or THET. 

Resultant l i f e  of the f u e l  capsule exposed 
t o  varying stress and temperature. 

The measured value of l i f e  t o  a prescribed 
creep c r i te r ion  i n  the input creep data.  

The value of l i f e  predicted by the f i t t e d  
creep l i f e  function f o r  the values SIGMA(1) 
and T ( I ) .  

An imposed upper l i m i t  on the value of THET 
i n  THETAC. 

The lower l i m i t  of the in tegra l  i n  DR, e i ther  
zero o r  TAU. 

Temperature of the gas when the capsule i s  
sealed. 

The i n i t i a l  steady s t a t e  temperature of the 
helium gas i n  the f u e l  capsule a s  calculated 
i n  DR. 

The instantaneous value of the steady s t a t e  
temperature of the inner wall of the p r imry  
s t ruc tura l  material. 

The i n i t i a l  steady s t a t e  temperature of the 
inner wall of the p r imry  s t ruc tura l  material. 

The imposed i n i t i a l  steady s t a t e  of the outer 
surface of the capsule. In THETAC t h i s  i s  
the i n i t i a l  temperature i n  the time period 
zero t o  TAU. 

In subroutine THETAC the imposed i n i t i a l  
steady s t a t e  temperature of the surface of 
the f u e l  capsule i n  the t i m e  period TAU t o  
THETA expressed a s  the temperature a t  zero 
time ( i .e . ,  a t  f u l l  thermal power). 
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'. 

T82 

WEL(K), K = l , l9  

w2 

XM, m 

XKO, YK, H 

XK(I), I = 2,8 

X4L 

The i n i t i a l  steady s t a t e  temperature of the 
surface of the capsule assuming tha t  it be- 
comes buried i n  ali i n f in i t e  medium of con- 
ductivity XK( 10) a t  zero t i m e .  

Volume of region I of the capsule. 

Volume of the void region. 

Volume of the f u e l  region. 

The specific thermal power function tha t  i s  
t o  be maximized ( W l ,  W2, or W3). 

The increment i n  the variables A W ( K )  i n  
calculating WH. 

Weight of the f u e l  capsule. 

Therm1 power of the capsule per un i t  of 
projected area.  

Thermal power of the capsule per un i t  of 
volume of a circumscribed rectangular 
parallepiped. 

Thermal power of the capsule per un i t  of 
weight. 

Thickness of region I of the capsule. 

An increment i n  the variable Am( K )  . 
The overall  length-to-diameter r a t i o  of the 
capsule. 

A f i t t e d  constant i n  the creep l i f e  function. 

A f i t t e d  constant i n  the creep l i f e  function. 

Thermal conductivity of region I of the 
capsule. 

Thickness of the capsule bushing (see Fig. 2 ) .  

Temperature averaged thermal conductivity of 
the i n f i n i t e  medium i n  which the capsule 
i s  immersed. 

The imposed lower l imi t  on the thickness of 
the primary s t ruc tu ra l  material  of the 
capsule. 
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x4u 

YK 

YSQ 

ZM 

0 

1 

2 

3 
4 
5 
6 
7 
8 

9 
LO 

The imposed upper l i m i t  on the thickness of 
the primary s t ruc tura l  material of the 
capsule. 

See XKD. 

The square of the vector 7, which i s  the 
function minimized i n  MAX. 

Atomic weight of the alpha-emitting radio- 
isotope. 

Capsule Regions (Fig. 2 )  

Helium 

Inner f u e l  l i ne r  
Rad i o i  s o t ope f ue 1 

Outer f u e l  l i ne r  

Primary containment wall 
Diffusion bar r ie r  

Gas gap 
Corrosion bar r ie r  
Radiant coating 

Fuel spacer 

An i n f in i t e  heat conducting medium 
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APPENDIX B 

Example Problems 

B1. MOPT = 1 

This sequence i s  used t o  generate constants i n  the creep l i f e  
A photograph of function f o r  1 percent s t r a i n  i n  the al loy FS-85. 

the output i s  shown i n  Table B1. 
( K  = 28) reported by Stephenson.16 The u l t i m t e  strength a t  room 

temperature (SIGU) is  taken t o  be 80,000 ps i .  

of 2.0 i s  chosen f o r  the constant GAMMA t o  provide a ra ther  abrupt 

change i n  the behavior of the function i n  the t rans i t ion  range. 

on the second and th i rd  rows of the output a re  the computed constants 

(ALPHA, XM, XKO) and the standard errors  i n  l i f e  and s t r e s s  (SELTH, SELSG, 

and R E S I G )  re la t ive t o  the f i t t e d  function. 

mental data [SIGMA(I), T ( I ) ,  THETA(I)] i s  shown i n  columns two  through 

four of the output. Other columns l i s t  pertinent calculated resu l t s  

[ IMp(I),  THETB(I), SIGB(I), DLTH(I) ,  and DLSG(I)] f o r  each data point.  

The creep data are  the 28 data points 

A moderately large value 

Shown 

The array of basic experi- 
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B2. MOPT = 3  

This problem requires determination of the dimensions of a capsule 
244 fo r  f u e l  having maximum power per un i t  of volume. 

on the capsule a re :  (1) The primary container m t e r i a l ,  f u e l  l iners ,  and 
the bushing are  t o  be made of Hastelloy N. 

bushing are  t o  be 0.010 in .  thick. (3) The outer surface temperature Of 

the capsule is not t o  exceed 2100°R i f  the capsule becomes buried i n  dry 

sand [XK(10) = 0.01671 immediately a f t e r  incapsulation. (4) The capsule 
i s  t o  be designed such tha t  the probabili ty of rupture i n  5 years i s  

0.001. 

ing for rupture i n  5 years with a s t r e s s  safety fac tor  of 2.0. 

0.05 5 X ( 4 )  5 0.5, 0.01 5 R ( 3 )  5 3.0. 

C%03 Restrictions 

(2 )  The f u e l  l iners  and 

This condition (see Sect. 4) i s  approximately sa t i s f ied  by design- 

( 5 )  

The input data f o r  t h i s  problem are  tabulated i n  the f i r s t  19 rows 

of the printed output (Table B2). 

X(2), and X ( 4 )  are  0.3, 0.1, and 0.16, respectively. 

i s  chosen t o  use only outer i t e ra t ions  i n  the MAX calculations (MOST = 0) .  

The variables and the i r  increments f o r  use i n  t h i s  calculation are  so  

small that  inner i t e ra t ions  would sometimes f a i l  because of loss  of 

significance ( the I B M  360/75 carr ies  only seven s ignif icant  f igures i n  
t h i s  program). 

I n i t i a l  estimates of the variables R ) ,  

In t h i s  problem, it 

The minimum value of YSQ (57.36) fo r  which the constraint  (D = 1.0000) 
3 

The i te ra t ions  tha t  follow produce the same computed 

i s  sa t i s f ied  and W i s  maximum (59.15 Btu/hr'in ) occurs i n  i t e r a t ion  

number 48 (M = 48). 
values indicating tha t  YSQ i s  trapped a t  e i the r  a s ta t ionary point or an 
absolute m i n i m  tha t  may be obtained with the current s e t  of variables 

and the i r  increments. Calculations with higher and lower s t a r t i ng  

estimates of X(4) indicated tha t  t h i s  solution provides mximum power 

within the range of i n t e re s t  i n  the variables R ( 3 )  and X(4). 
array of computed values i n  the output i s  the sane a s  i n  the l a s t  

i t e r a t ion  produced by MAX, indicating tha t  LIMlY did not c a l l  DF because 

R ( 3 )  and X(4) were within the preselected limits. 

The l a s t  



Table B2 

GARMA 
~ _ _  18 = 21OC.O A = 1454.0 ETA = C.4 BETA = 0.0 

T= 0.0 c = 1.00 G = 1.00 = 2.00 an = i8szo.a E 1. 1.000 PS = 0.0 TS 1 . 5 6 0 . E  
II= 0.1103 LR = L44.U I1 560.0 
LAMBOA = 0.43680E-05 N = 100 NN = 100 

1 1 1  .I 0.0 

MOP1 = 3 hMAX = 5 NO = 2 

THE FOLLOYING THREE ROYS ARE T H E  CONTENTS OF THE X .  P, ANO xa ARRAVS 

0.0100 0.0 0 .o 100 0.0 0.0 0.0 - 0.0 0.0 0.0 
0.3250 0.3860 0.3250 0.3250 u. 0 0.0 0.0 D. 0 0.0 
0.1000 2.0000 2.0000 1.0000 1.0000 1.0000 1 .oooo 0.0100 0.0167 

ALPHA = 0.126106 0 8  

VK = C.93ClOE 16 
XI1 0 . 1 0 ~ - 0 3  

~ 
~~ 

X4U = 0.500 X4L = 0.050 R3U = 3.000 R3L = 0.010 

SIGU 110000. SC = 2.00  SU 2.00 PHI 0.106-04 
a = 0 . 1 0 t - 0 4  0.10t-05 0.10E-05 U t L R O  OELX2 OELX4 = 0.10€-05 
TAU * 0.0 181 = 2100. 182 = 2100. XLO = 5.0 
RO = 0.3 0 

l X  = 2 NLAM = 0 I T E R  = 9 3  L ~ S T  = a 
G = 0.990 C = 1.000 C R I T  = 1.00000 ALAM = 0.0 

M- 1 O= 0.390253E C 1  Y= 0.753760E 02 VSP= 0.157817E 06 Z= 0.157817E 06 LSTOP= 0 

0.395568E 03 0.358484E-01 

0.365261E 02 0.160000E 00 

-C.29C253E E l  0.0 

R A D I I  A R E  0.26557 0.27557 0.31142 0.32142 0.48142 0.48142 0.48142 0.48142 0.48142 
L 9 0.481- 01 A V 2  0.33641t  03  Y 1  = 0 . m E  02 YZ = 0 . r m  = .  

a- 2 o= O . L f ~ 1 1 2 t  0 1  Y = o . l I 5 t m t  O L  IS9 0.406bP5C 10 Z * U.406- 
-~ 

0-634969E 05 0.320644E-01 

04 ~ i 6 4 i a s ~  00 

00 0.1- 03 

ARE 0.29895 0.3UB95 0.34101 O m  0.51512 0.51512 0.51512 0.51512 0.51512 
L 0 0.51512E 01 A V 2  0.35996E 03 Y 1  0.67828E 02 UZ 0.65837E 02 Y 3  0.40391E 03 YT 0.891196 00 

M- 3 OX 0.114299€ 0 1  0.606518E 02 VSP- 0.464751E 1 3  I!= 0.464751E 13 LSTOPl  0 

-0.2145926 07 0.297294E-01 

0.206221E C 6  0.163241E 00 

-0.142992E 00 -0.919341E C4 

1 A O 1 1  ARE 0.32371 0.33371 0.36344 0.37344 0 .53669 0.53669 0.53669 0.53669 0.53669 
7. 0.53669L 0 1  A V Z  = 0 . 3 7 5 m  c3 Y 1  = 0.6 02 YZ 0.60652€ 02 Y 3  = o.wmmE-3u 

le E 0 2  vsp LT Z= 0.- 17 LSTOP- 4 0- 0.100614E 0 1  Y = .  = 0.1 0 
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c 
Table B2 (continued) 

L = 0.54344E 0 1  AV2 0.37975E 0 3  Y1 * 0-64293E 02 Y Z  = 0.59154E 02  Y3  0.38135E 0 3  U'= 0.99583E 00 
W= 44 o= c.icooooE 01  u= 0.591540E 02 vsQ= 0 . 1 1 2 3 4 4 ~  04 z= O . l l 2 3 4 4 E  04 LsTop= o 

- C .  1 3 @ 7 2 3 ! 3 Z -  -0.291225E-01 - 

-C .305 1ZZE>2 C " 6  3 6  19E- O C  

C.476837E-06 0.111302E C2 

RAOII A R E  0.3307C 0.3407C 0.36982 0.37582 0.54344 0.54344 0.54344 0.54344 0.54344 
L * Q.3T3-T A V Z  0.3797% 03 Y l 7 0 . 6 4 Z 9 3 F  02- UZ =-0.39154E 02  W3 = 0.38135E 03  UT 0-99581E 00 

H- 45 o= o . i o c o c o t  c i .  n= 0 . 5 u 1 5 4 0 E 3 2  7 s a =  o. lbST6T-03-  Z= 0 . 1 0 4 1 6 2 ~  04- LsTnP- 0 

- Z54E C Z  0 . 2 9 1 2 m - 0 1  

-. 0.47C41OE € 1  o . r b 3 c i 8 c  oc 
-. __ - -  -- - 

- C  .9536T4%6-0 .11  C 73 SE 02 

R A D I I  A R E  0.33070 0.3407C 0.36982 0.37982 0 .54344 0.54344 0.54344 0 .54344 0.54344 
L = 0 .54344t  01- A V Z  = 0 . 3 7 9 7 5 ~  03 !-.).64293~ 02 Y Z  - 0 . 5 9 1 5 4 ~  0 2  w3 = 0.381z03 nT = 0.99581E 00 

H= 46 o= 0 . 1 0 0 0 0 0 ~  01- -K= 0 . 5 9 1 5 4 0 ~  02 vsa= 0 . ~ O z i i 9 ~  2 L= 0 . 3 0 2 g 9 ~  04 LSTOP= . o 

0.549556E C2 0.291225E-01 

O.lC376CE 0 1  0.163618E O C  

-0.953674E-Cb 0 . 1 1 2 2 3 E  02  

R I D 1 1  A R E  C.3307C 0 .34070  0.36902 0.37982 0.54344 0.54344 0.54344 0.54344 0.54344 
L 0 . 5 4 3 4 4 t  G I  AVL 0 . 6 4 L Y j t  0 2  Y2 0 .>9154€  02  Y 3  = 0 . 3 8 1 ~ ~  03 v i  - 0.W5mE-uF 

n= 4 7  c = 0.lDOOOOE 0 1  Y = 0 . 5 9 1 5 4 E a T  Vm= 0 . m 7 2 7 E  02  1. 0.574727E 02 LSTOP= 0 

- 3330t  C C  0 . 2 1 T m E - C l  

O . f > > Z C ' C E  01 0.16361Ut C C  
~ - - 

_ _  - cb--a , 7 m 5 a 7 ~ -  ~-___- - -  ~- - - 
R A U T m r  0.33670 0.24070 0.36g82 --0.3TVbT 6 X 4 3 4 4  0.54344 0.54344 0.54344 0.54344 
L = 0.54344E 01 AV2 = 0.37975E 03 Y l  = 0.64293E 02 W2 = 0.59154E 0 2  Y3 = 0.38135€ 0 3  UT = 0.995RlE 00  

W= 48 0. O.1OOOOCE - 0 1  Y =  0.591540E-02-- VSc= 0.57365hE 0 2  Z= 0.573656E -02 LSTOP= 0 

-0.62L19CbE 00 -CJ~29LZZ~E-01 - - ~  

_. - 

0.754785E C l  0.163018E 0 0  

-0.953674E-Cb O, lC!569E02  ___ 

RAGI1 A W E  0.3307C 0.34C70 0.36982 0.37982 0.54344 0 .54344  0 .54344  0.54344 0 - 5 4 3 4 4  
- - C 7 @ ; 5 2 T 6 4 F T  7 V 2  = O . m  03 W 1  = O . ? X m T - U T =  U . m E  02 U 3  = 0.38135F 0 3  WT = 0.99581E 00 

II= 49 c = 0.59154Ct u2 YSU 

- 0 . 6 2 C C ~ E - C O  0.2- -or ~ - _ _ - _ _ - -  - 

0 
_ _  

-. - - - ____ -~ - 
c . 7 5 4 7 m - a -  - 
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Table B2 (continued) 

- __ -. __  
-0.953674E-C6 0.109569E-02- 

~~ 

R A O I I  A - R r 0 . 3 3 0 7 C  0.3W7C 0.36982 0.37982 0.54344 0 . 5 4 3 4 4 - 6 3 4 T 4 4  0.54344 0.54334- 
L = 0.54344E C 1  AV2 = 0.37975E 0 3  U 1  = 0.64293E 02 W2 = 0.59154E 02 W3 = 0.38135E 0 3  UT = 0.99581E 00 

M 4 - _  S[_  != 0.100000E 01 Id= 0.59154OJ 02 _-YLQ= 0.5736ZbE 02 Z= 0.573655E 02 LSTOP= 0 

- -0.62I39CbE 00 0-291225E-01 _ _  - ________ ~-~ ~ 

C.754785E C 1  0.163618E O C  

-C.953614E-C6 0.10956SE C2 ___- . 

R A D I I  A R E  0.33070 0.34070 0.36982 0.37982 0.5f344 0.54344 0.54344 0.54344 0.54344 
L = 0 . 5 4 3 4 4 E X l  --2 = 0 . 3 7 9 m  0 U1 =--O.Z- U2  -0.5QlS&E 62 113 = OT38I33E 03 WT = 0.9QSBTE 00 

RAD11 A R E  0.33070 C.3407C 0.36982 0.37982 0.54344 0.54344 0.54344 0.54344 0.54344 
L = -0.54344E 0 1  AV2 = 0.37975E 0 3  U l  = 0.64293E 02 W2 ~- = 0.59154E 0 2  W3 = 0 . 2 1 3 5 E  03 YT-= 0.99-58lE 00 
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B3. MOPT = 4 

We will i l l u s t r a t e  the use of t h i s  sequence t o  calculate the rupture 

l i f e  of an alloy exposed t o  a constant stress rate,  a problem different  

from the n o m 1  one of calculating the l i f e  of a capsule. 

i s  subjected t o  a constantly increasing stress rate ,  a, of 3500 psi/hr 

a t  a temperature of 2460'R. The input constants (some are  redefined), 

printed on the first 14 rows of the output (Table B3) a re  determined a s  

follows : 

The a l loy  T-222 

1. 

2. 

3. 

4. 

5 .  

6 .  

7. 

8.  

9. 

10. 

kt TA = A  = BEXA = DELTA = PS = TA = NMAx = NQ, = TAU = RO = 0 .  

kt ETA = C = G = TS = X ( I ) ,  I = 1,g b u t #  4 = P(I) ,  I = 1,g = XK(I), 
I = 2 , l O  but # 9 = SC = SU = XLD = 1.0. 

The constants GAMMA, SIGU, ALPHA, YK, and XM a re  chosen from a f i t  

of T-222 rupture data. 

Let  TA1 = ~ 8 1  = ZM = 2460. 
S IGT . 
Choose THET such tha t  i*T" < SIGU; therefore, T" = 25. 

Choose LAMBDA such tha t  LAMBDA*THET < 0.01; therefore LAMBDA = 

This causes the expression [l - MP(-LAMBDA*T)] t o  produce IAMl3DA-T. 

Choose H = 10 t o  cancel IAMBDA. 

kt RO = 0 and XK(9) = 3; therefore R(3) = XK(9) and VO = 0. 

Let X(4) = 2 and E = 2 . 2 5 .  

ZM cancels TA1 i n  the expression f o r  

4 

This causes E t o  cancel the term 

[R(4I2 + R(3)21/[R(4)2 - R(3I23. 

Let  RR = u = 3500. 
6 Let PHI = Q = DELTH = DELQME = and THMAX = 10 . 

The computed value of THETA, determined i n  f ive  i te ra t ions ,  i s  
19.33 hours; this compares with an experimentally determined value of 

19.1 hours. The value of OMEGA i s  one since THMAX was not exceeded. 
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APPENDIX C 

L i s t  of CAPSUL Program 
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PHOGRAP CAPSlJL 
O I W F N S I O N  S I G M A ( 5 O O ) r  T ( 5 0 0 ) r  T H E T A ( 5 O O ) r  T H E T B ( S O O ) *  SIGB(5OO) 
R F A L  L M P ( 5 0 0 ) r  O L T H 1 5 0 0 ) r  D L S G 1 5 0 0 )  
COCMDN/CGN/ K. S I G U .  ALPHA. Y K r  X H r  PHlr Or D E L T A *  DELOMEI THMAX. . 

1TAIJ. r R 2 .  TR2.  XLD. ROI R ( 8 ) r  GAMMA- R R V  E. PS. TS I  H *  ZM. LAMBDA9 
7TA.  k0r X ( 9 ) .  P ( 9 ) .  X K i 1 O ) r  A s  ETA. B E T A 9  T N I T r  TERM. T8r S C r  SU. 
3N. NN. DELTH.  AV2. NMAX. L r  Y l r  WZr W3. THETI W T r  T A L  

R F A L  L A P B D A t  L 
C O # M O N / H A X / I X ~ M ~ A L A ~ . A L F o . C I C S O 1 D H 1 W H  
E Q U I V A L E N C E  t X K (  1 ) r O M E G A )  
C l l P P C N / L I M / X 4 l J r  X4L. R 3 U r  R 3 L  
C O M N C N / N I C / C K I T .  N I T E R .  I T E R  
C O C C G h / D E L S / D € L R O .  O E L X 2 r  D E L X 4  
C C C C U N / C C N V G / X X I 1 9 ~ 1 ~ ~ R ~ ~ L M f l S T r L S T O P ~ J W A Y r G  

C*** V A R I A R L E S  U S € D  I N  T H I S  PROGRAM F O R  D E C I D I N G  OPTIONS 
C H f l P T  C E C I O E S  ON SEOUENCE T O  USE 
c MOPT=l L S T S Q  IS USED ALONE 
c MCPT=7 L S T S O .  M A X .  L I H I T r  AND DF ARE USED 
c M n P T = 3  M A X .  L I M I T v  AND OF ARE U S € C  
c MOPT=4 T H E T A  ALONE I S  USED 
C NMAX D F C I C E S  Ch SEQUENCE T O  USE I N  M A X  
c k M A X = 1  THREE I N D E P F N D t N T  V A R I A B L E S  
t N P A X = 7  X ( 4 )  I S  S P E C I F I E D  
C N C A X = 3  R ( A )  I S  CCNSTANT 
c NMAX=4 R ( 3 )  I S  CONSTANT 
C NMAX=5 RZFRO IS T O  BE COMPUTED 
c N Q  C F C I C F S  F l J N C T I G N  T O  B E  P A X I M I Z E D  
c N Q = l  POWEH/PROJECTED AREA 
C h 0 = 2  POWFR/VOLUME O F  C I R C U M S C R I B E D  RECTANGULAR P A R A L L E L E P I P E O  
C N Q = 3  POWER/WFIGHT 

90 R F A C ( 5 C . 1 0 0 )  MOPT. NMAXI NQ 
N N N = l  
I F t P C P T - 1 )  13.10.91 

C***  COMPGN CONS1 ANTS F l t R  MOPT=Zr  39 AND 4 FOLLOW 
9 1 R FA D I 5 0 

R E A D ( 5 0 . 1 1 1 )  T A . A . t T A . B E T A . D E L l A . C I G I T A 1  
1 1 I lp=EnMA I HH E I P S r TS. H r ZM 9 TA 

100 F O R P A T ( 3 1 7 )  
110 F f l W C A T ( 3 E 1 0 . 0 )  

150 F G R C A T ( F l O . 3 r  2 1 3 )  
W R J T F 4 5 1 . 8 9 7 )  T R I  A t  € T A r  P € T A r  D E L T A ,  Cr G *  GAVMAI HRI E.  P S v  T S r  
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C*** CCNSTPNTS FUR L S T S Q  R O U T I N E  
10 R E A D ( 5 0 r l O l )  K I  S I G I J .  GAMMA* L S I G M A ( I J r T ( I ) ~ T H E T A I I ) r I = N N N N ~ K )  

C A L L  L S T S O _ ( K I S I G U I G A M M A . ~ I G M A * T ~ T H ~ T A ~ A L P H A I X M ~ X K O )  
S F l  TH=O.O 

C*** CUhrSTANTS FOR l JSE I N  MAX 
30 R E b D ( 5 C * 1 1 0 )  AL.PHA*YK.XM 

W R I T F i 5 1 r 1 0 3 )  ALPHA.  X M .  Y K  . - ~ 

25 C O h T I N U E  
R F A C ( 5 0 r l 1 1 )  X411. X 4 L 9  R 3 U 1  R 3 L  
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W R I T E ( S l . l Z 6 I  X 4 U e  X4L. R 3 U r  R3L 
126 FClRMAT( 'OX4U = ' * F 6 . 3 . 5 X . ' X 4 L  = ' . F 6 0 3 . 5 X * ' R 3 U  = ' r F 6 . 3 1 5 X 1 ' R 3 L  = ' *  

1 F6.31  
R E A D ( 5 0 . 1 4 1 )  S I G U .  SC. SU. P H I .  0- OELROI D E L X 2 r  D E L X 4 .  TAU. T 8 1 ,  

1782. X L D +  RO. X 1 2 ) .  X ( 4 ) .  THET 
7 4 1  FORMAT(4EZO.O)  

W R I T F ( 5 1 r 7 4 2 )  S I G U .  SC+ SU. PHI. 0. DELRO. D E L X 2 r  D E L X 4 r  TAU. 1 8 1 9  
l T R 7 .  XLDI RO. X ( 7 ) r  X 1 4 ) +  T H E T  

342 F O R M A T I ' O S I G U  = ' f l O . O * 5 X * ' S C  = ' r F 5 0 2 r 5 X r ' S U  = ' F ~ . ~ ~ ~ X I ' P H I  ='. 
1 E 1 0 . 7 + / . '  D = ' + E 1 0 * 2 v 5 X + ' D E L K O  = ' * E 1 0 * 2 r 5 X *  ' D E L X 2  = ' E 1 0 . 2 . 5 X 1  
? ' D F L X 4  = ' E 1 0 . 2 . / * '  TAU = ' r E 1 1 . 3 * 5 X * ' T 8 1  = ' . F 8 o 0 ~ 5 X r 8 T 8 2  = ' r F B . O r S X  
3 ' X t D  = ' F 6 0 l r / r '  RO = ' . F h . 3 * 5 X * ' X ( 2 )  = ' r F 6 , 3 * 5 X . ' X ( 4 )  = ' r F 6 0 3 T 5 X 1  
4 ' T h E T A  = ' . E 1 2 . 4 )  

R F A D ( 5 0 e 4 0 7 )  I X +  NLAM. N I T E R 9  I T E R .  L M O S T r  G. CI C R I T I  A L A M  
407 F O R M A T ( 5 1 4 r / r 4 F l O o O )  

W R I T E ( 5 1 . 4 C 3 ) I X *  NLAM. N I T E R 9  I T E R .  L M O S T t  G. C. C R I T t  A L A M  

90C NMAXl=NEnAX 
J A M = O  
C A L I  VSll 

6 1  C A L L  DR 
J A C = J A M t  1 
I F ( J A M . G T ~ 1 0 0 )  GO TO 66 
I F (  DH.CT.4-0)  63.63 

6 3  I F I D H - L T - 0 . 3 )  6 4 . 6 5  
66 W R T T F f 5 1 . 4 1  KO. l R ( I ) * I = l * 8 ) *  L. A V 7 1  W l r  W2. W3r WT 

GO' TT) 9 0  
6 7  X ( 7 )  = C 0 9 5 + X ( 2 )  

N B l = N C  Z NQ=O 
C A L L  WR 

R F A C ( 5 C r 2 1 0 )  S I G l J +  5 C *  SU. P P I +  61, U E L T H r  D E L O M E t  THMAXv TAU. 181, 
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R F P L  LII 2 r 1 . 4 r V ( S )  
I .  = 7 . 0 * X L C * K ( R )  



.. 
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D F L ( 7 ) = W F L ( 7 ) = D E L X 2  
A L F (  1 I = R O  
P L F  ( 2  ) = X  ( 3  ) 
I X=7 
HFTURN 

30 D t C ( l ) = W E L ( l ) = D t L X Z  
DEL 4 ? 1 = k E L ( 7 1 = O E L X 4  
A L t ( l ) = X ( 7 )  

~ _ _ _ _ ~ _ _  

I X = 7  
R E T l l R N  

40 D t L I I ) = W E L ( I ) = D t L X 2  
D F i  ( 7 ) = W F L ( 7 ) = D E L X 4  
RO=H I 3  1-X ( 1 ) - X  ( 2 ) - X (  3 1 

P L F  4 2 ) = X  ( 4  1 
I X = 7  
R € T U R N  

5 0  O € L ( I ) = W € L ( l ) = D E L X 2  
D E I  i 7 ) = W E L (  7 1 = U E L X 4  
A L F I l l = X I 7 )  
A I  F 1 7 ) = X ( 4 )  
I X = 7  
RF  T UR N 

Sbf lRf l lJT  IhE RZERO 
CCJMMON/CON/ K. SIGU. ALPHA. YKI X M 9  P H I 9  QI D E L T A ,  OELOMEV THMAXI 
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31 C 0 F ; T I N l l E  
I F  I K O , G T , O . O T  RETURN 
RC=. 70 
R ETIJRN 

p~ 1 7 0  X ( 4 )  = X411 6 GI1 T(1 - 

I80 I F I  X ( 4  1 -1.T .X4L 1 1 9 0 r 2 0 0  



.. 
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- - __ 3 N r  NN*  ___ D E L T H r  A V 2 r  NMAX. L *  W 1 .  W2r d.39 THET. WTq T A L  
R F P L  LPMPUA. L 
NSTCR=N d TRO=TR 
TAC=T P 
n3=C4=TNJT=C.O ~ 

i = n  
O M E G A  =1.0 
S C l  = S C  d 5111 = SIJ 
TFRM=TAU $ N=NN 
i F ( T N I T . E Q . T E K M )  GU TO 10 
C A L L  nR 
D 3  = UH 

I A = T A l  

C A L I  DR 

10  T N I T = T P U  $ T 8 = T A I  

2 G  T F R M = T h F T  B N=NSTCR 

04 = O H + C ~  - - 
W R I T F I 5 l r l C O )  T h t T . 0 4 r U H  

100 FORMAT 13F20.7-J - 

I F  (OC.LT .  ~.O.AND.THFT.GE.THMAX)  GO T O  40 

T F R C = T A l I  6 h = N N  
fl MF tI A 1 =E'FrEG A +OF L CM E 
S C = O M F G A l * S C I  $ S U = O M E G A l * S U l  



66 
._ 

I 

I3 3 = O 4 =O& 
I F ( T N I T . E C . T E K M )  GC TO 4 1  
C A L L  OR 
C3=Ch 

SI IRHFI IT  I R E  C K  
C l l P P O r U / C T h r /  K. $IC,U* ALPHAI Y K I  X P I  P H I *  QI D € L T A I  n t L ( 3 M E I  THMAXt  

WFAl I A M P C A .  L . L 7 * L 4  
F Q I J J V P I  F N C k  ( X K C . Y K ) r  ( A O e A i A 7 1  
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Cl = R R / E / ( V O  -+ E T A t V Z ) * I H 1 4 L * * 2  + H ( 3 ) * * 2 ) / t R ( 4 ) * * 7  - R ( 3 ) * : * 2 )  
C 2  = T R  - T A  + A 7 * V 2 / 6 . 2 8 3 1 P / L 2 * S U M  
C 7  = O.C S N 1  = N 
C 3 = P S t ( V O + F T A * V 7 ) / K R / T S  
C 4 =  P ( 7 1 *V7*H / Z M- 
C A L L  5 F T F A l J L T ( 5 r 5 H E U = - l )  
DO 9 C  T = T N I T . T E K M r C I F F  
S I G T  = C l t ( C 3  + C 4 * ( 1 . 0  - E X P I - L A M B C A * T ) ) ) * ( T A  + ( T o  - T A 1 *  

T 4  = TP + C Z * E X P I - L A M H D A * T )  

~ -- _ _ _  _ _  -__ -_ 

- 

l E X P ( - L A M P O A * T )  1 

90 01 = n i  + X K O * (  ~ C * * ~ A ~ . ~ A ~ ~ ( I G U ~ * G A M M ~ * S I G T * * G A M M A / A L P H A - ~ ~ _ G A M M A /  
1 (%IGIJ**GAMMA - S l J * ~ ; t r , A M Y A * S i T , T + * G A M M A )  1 **( l .O /GAMMA/XM/T4)  
SIGG = SIGU**GACMA J-SUGA = SLL**GAMMA 

707 N P T  = 1 d 07 = 0.0 
na i r ;  ~ = i . h i - i  
t X = F X P ~ - l A ~ R f l A ~ ~ T N I T + J * O l F F / N l ~ ~  

T 4  = 1 A  + C7*EX 
29 S I G T  = C l * ( C 3  + C 4 * ( 1 . 0  - € X p ( T A  +(IO - T A ) * E X )  

____-__ F = X K O * I  SC**GAMMA*S I G G * S I L T * * : G A y M A / A L V H 4 = * G A M M A / (  SIGG - FUGA*_- 
1 S I G T * * G A Y M A ) ) * * L 1 . 0 / G A ~ ~ A / X M / T 4 )  
GO TO ( I l . l ? ) . N P T  

11 C 7  = E7 + 4.C*F d N P T  = 2 $ GO TO 10 
17 D 7  = 112 + 7.0*F $ N ? T  = 1 
10 C f l h T I N U F  

_ _ _ _ _ _ _ _ _ ~  

GO TO ( 3 0 0 . 7 O l ) r N T  
l C C  O ~ = ~ I F F * ( C l t 0 7 ) / 3 . ~ / N l  $ N 1 = 2 * N l  $NT=? $ GO T O  302 
301 07=01+07 6 0 7 = O I F F * 0 7 / 3 . 0 / N l  

305  0 3  = 02 S N 1 = 2 * N 1  
I F  ( A H S (  ( C 2 - 0 3  1 / O 7 )  .LT.PHI I 3C4. 3 C 5  

I F ( h l o G T o 1 6 * N )  306. 302 
306 W R I T F ( 5 1 . 7 4 7 )  
747  F C R M A T l '  F A I L t O  TO C E N V t H G E ' )  
304 OH = 07 

ENI: 

S l iHHOlJT I N E  M A X (  NLAC I 

C A L L  S F T F A l r L T (  4,4hEU=O 1 
- - _ ~~~ 

~~ - - - ~  
C C M ~ C N / C O N V G / X X ( 1 9 . l ) r K K 1 L M a S T . L S T ~ L S l O P ~ J W A Y ~ G  
C n M M n N / ~ A X / I X . ~ . A L A ~ 1 A L F ( l 9 ) * C * C S Q I C H I W H  
C T M M T N / M P T Q / b ( l 9 r l 9 ) . X (  1 9 r l ) 9 N R 1 Y S Q . Z  
C O M W G N / N I C / C R I T r  N I T t R .  I T k R  
CR I T F Q = C R I T * * 7  

NR= I X+ 1 
M =  1 

I F I N L A M ) 1 0 . 5 ~ 1 0  

csa=c*c ~~ 

4 C A L I  SETUP 

5 C A L L  G T A L A P  
c F I R S T  LACRCA C O C P l J T t D  I N  SUBR. GTALPM 
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C A L L  O R  
1)7=nt-I 
A F F ( I ) = S T O R I + D E L ( I I  
C A L L  CR 
E 1  =OH 
A L F ( J ) = S T C R J - D E L ( J )  
C A L L  DH 
D 4 = D H  
A L F I I I = S T O R I - D E L ( I )  
A i  F ( J I = S T O R J  
O S D l  I 9 J I = (  C 1+O3-0 7-04 1 / 
GI1 T O  3 

C A L L  WR 

W=WH 
DO 60 I = l . I X  
S T C R I = A L F (  I )  
A L f ( I ) = A L F ( I ) + W E L ( I )  
C A L L  WR 
kP=Wb 
A L F ( I J = S T O R I - W E L ( I )  
C A L L  W R  
WM=WH 
WFDII~=(WP-WM)/(2.*hEL(I)) 

.I= 1 

4. * D E L  ( I )*DEL ( J 1 1 

40 A L F ( I ) = S T O R I  

C C O M P U T E  F I R S T  A N D  S E C O N D  D E R I V A T I V E S  O F  F C N  W 

WSDII.I)=(WP+WM-Z.*W)/(WEL~I)~~Z) 

74 IF(IX-Jlh0*21.21 
2 1  l F ( J - I ) 7 1 3 . 7 3 * 7 2  

713  U S D ( I * J I = W S C ( J . I )  
7 3  J = J + L  

GO TO 7 4  
27 S T @ R J = A L F ( J )  

A I  F t  J I = A L F (  J ) - W E L (  J 1 

W3=WH 
C A L L  WR - 

A L F ( J I = S T O R J + W E L ( J )  
C A L L  WR 
k7=WH 
A L F ( I ) = S T O R I + k E L ( I )  
C A L L  WR 
W l  =WH 
A L F ( J ) = S T O R J - W E L (  J )  
C A L L  WR 
W4=Wh 
A l F ( I ) = S T O R I - W E L ( I )  
A 1  F (  J l = S T O R J  
WSO( I ..I 1=  I W l+k3-h7-W4) / (4-*WELf I ) * W E L (  J 1 1 
GO T O  73 
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60 A L F ( I ) = S T C R I  
RETURN 

SURROUTINE G T A L A P  
C O ~ M O N / S E T U P / U I O + W F O (  1 9 3 * D F D (  1 9 ) r W S D t  1 9 * 1 9 ) r D S D ( 1 9 r  1 9 )  r D E L ( L 9 )  rWEL 

~ 

C f l M M O N / M P X / I X ~ M ~ A L A M . A L F ( 1 9 1 . C . C S O . O ”  

suFn=o 0 

0 EN =o,-- 
DO1 4 J = I  I X 

C COMPUTES AVERAGE LAMBDA FOR 1 S T  I T E R A T I O N  

CEh=DENu+l .  
14 C O N T I N U E  

15 C A L L  F R R C R  
I F ( D E N 1 1 6 . 1 5 . 1 6  

END 

S U R R O U T  I h E  CONVG 
CQM&N/CONVG/XX( 19.1) r R K . L M O S T r L S T O P r J W A Y * G  

~ -p p- 

C O M M O N / M A X / I X I M ~ A L A M . A L F O . C . C S O . O H I W H  
C f l M M f l N ~ C A T Q / b (  L 9 * 1 9 ) * X (  19.1 ) . N R * Y S O * 2  

C T E S T S  kbETHER M C R E  I N N E R  ITERATIONS A R k  REOUESTEO AND COMPUTES A 
C VFCTOR INCREMENT O N t  HALF THE M A G N I T U D E  OF THE L A S T  SUCH VECTOR 
C INCREMFNT T R I E D .  I F  NEEUED 
~- IF(Eb’1) _le798 __ 

1 C A L L  ERRCR 
A I F ( L M O S T . G T , O )  GO TO 3 



7 RK=YSO*G 
J W A Y = l  
GO T O  100 

3 I F ( Y S Q - R K ) 2 * 4 * 4  
4 L S T C P = L S T O P + l  

f F ( L M f l S T - L S T O P ) 5 r 6 r 6  
5 .JWAY=-l 

100 R F T U R N  
END 

SURROl lT  I N E  O U T P U T  
COMMCh/CON/ K *  SIGU. ALPHA. Y K r  X H *  PHI .  Qr DELTA. DELOMEr  T H M A X t  

1TAlJr 181. T A 2 .  X L D -  ROI R t 8 ) r  GAMMA. RK. E r  P S *  T S *  H* Z M r  L A M B D A 9  
7 T A r  N O *  X ( 9 ) -  P ( 9 ) -  X K ( l O ) * A B C + E T A *  BETA.  T N I T t  TERM*  T 8 r  S C r  SUI 
3N. Nh*  D F L T H r  AVZ.  NMAX. L r  k l v  k 2 r  W3r T H E T t  WTv T A 1  

C I lMHnN /SE i l l P /  k 0 .  W F D  ( 19 ) + D f  D (  19 W S O  ( 19 9 19)  r DSD(  199 19 1 *DEL ( 19 ) r 
lWFl ( 1 9 1  

C Q ~ M C N / C O N V G / X X 1 1 9 ~ 1 ) r R K . L M O S T I L S I O P . J W A Y r G  
WR ITF 5 1 1 1 M,D* W. YSO. 2 L S  TOP 

1 6 O R M A T ( l H 0 3 X 2 H M = 1 6 * 5 H  D z F 1 4 0 6 r 5 H  W = E 1 4 * 6 r 7 H  Y S Q = E 1 4 * 6 r  
15H 7 = E 1 4 * 6 r 9 H  L S T O P = I 6 )  

4 F O R M A T ( ' 0 K I O I  I A R E ' r 9 F 1 0 . 5 * / . '  L ='  * E 1 2 * 5 * 3 X * ' A V 2  = ' r E 1 2 * 5 + 3 X 1  
l ' W 1  = ' * E 1 ? 0 5 * 3 X * ' W ?  = ' r E 1 2 0 5 r 3 X r ' W 3  = ' r E 1 2 * 5 r 3 X * ' W T  = ' r E 1 2 * 5 )  
H f  T l J R h ;  - 
ENT) 

SIJRHOIJT I FIE A K  I T H  
COCMON/SFTIJP/W *D+W FD(  19 r O F O (  19)  rWSD(  19.19) r D S D (  1 9 9  19) * D E L I  19 I t  WEL 

l ( 1 9 )  
C O M M ~ ~ N / M A X / I X I M I A L A C . ~ C F ( ~ ~ ) * C * C S Q * ~ H * W ~  
C O M M f l N / ~ A T B / A ~ 1 9 ~ 1 9 ~ r X o . N R . V S Q r Z  

on 10 I = l * I X  
C COMPLJTFS F L E M F l v T S  OF M A T R I X  A *  N R = I X + l  

nn 11 J=I.IX 
11 A ( I ~ J 1 = k S D ( I . J ) - A L A M a D S D ( I . J )  

A I  I.hR1=-DFD(I) 



72 

hlRl=NH-l 
DO 5 K=l.NRI 
IRI=K+l 
PIVOT=O .O 
O f l  6 I=KihR 
IK=lK-1 I+NA+I 

~~ _ _ - ~  

7=ARSFIPIIK)) 
I F I Z-P I VCT 1 h 9 6 r  7 

9 DET=O.O 
R FTllR h 
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. 1 5  X(KJ)=X(KJ)*PIVOT 
DO 16 I=IRl*NR 
IJ=(J-l)*NX+I 
IK=(K-l )*NA+I 

16 XI IJ)=X(IJI-A(IK)*X(KJ) 
5 COkTINUE 

NRNR=(NR-l)*NA+NR 
IF(A(NRNR)) 1 7 - 9 - 1 7  

17 DET=DET*L(NRNR) 
PIVOT=l.C/AlNRNR) 
DO 1 8  J=l*NV 
NRJ=(J-L)*NX+NR 
X(NRJ)=XfNRJ)*PIVOT 
DO 18 K=lINRl 
I=NR-K 
suP(=o,o 
00 1 9  L = I * N R l  
IL=L*NA+I 
LJ=(J-l)*NX+(L+l) 

19 SUH=SUM+P(IL)*XILJ) 
IJ=(,I-L )*NX+I 

18 X(IJ)=X(IJ)-SUM 
RET 11R N 
END 

SUAROUTINE STEP 
C C M M f ! N / C O N V G / X X ( 1 9 ~ 1 ~ ~ R K ~ L M O S l ~ L S T O P ~ J W A Y ~ G  
C C M M O N / M A X / I X I M . A L A ~ . A L F ( ~ ~ ) ~ ~ * C S O ~ D H ~ W ~  
CCMMCN/CATQ/b( 19.191.X( 19*1)*NR*YSO*Z 
OIMENSION ALFX(19) 

G COMPUTES NEW ALPHAS AND LAMBOA, NR=IX+l 
IF(JWPY1S-5.9 
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